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I. INTRODUCTION

The major part of the work reported here is'conberned‘w'ith the numerical
analysis of electron flow in high current megavolt diodes. - The analysis was performed
using a digital computer code developed by Varian Assbciatesﬂ over the past seven years.
Previous related studies were performed under contract DASA-01-68-C~0025,! In the
previous studies, congiderable attention was given to various electron emission
mechamsms and to the proper model to be used for the cathode in the d1g1ta1 ealcula—
tions. Calculatmns of the electron flow in a needle and plane dlode were made using
the various models, and the results of the calculations were compared to measured
results. It was concluded that in the relatively high impedance megavolt diodes the
cathode behaves essentially space-charge limited, and that there is little, if any, ion
neutralization of space charge in the flow. Presumably, the source of electrons is a
plasma which remains very near the cathode surface, and which is formed by field

emission heating of the surface during the early part of the pulse,

One objective of the previous studies was to determine whether or not a 10 MV,
3 MA beam could be generated with a single diode structure. The studies and cal-
culations indicated that it was not feasible to obtain such a beam in a single diode
without undesirable severe pinching of the beam near the anode. . To keep the inward
convergence of the beam at the anode to a reasonable value, it was estimated that
a number (in the range of 4 to 16) of diode modules would have to be employed with

each diode isolated from the self-magnetic field of the others.

One of the purposes of the work reported here was to further verify the models
used in the diode calculations, To accomplish this a number of diodes were analyzed
for which measured results were available. The numerical calculations will be

compared with the experimental results for several such diodes,




Another' purpose of this program was to perform numerical flow calculations |

for diodes. For these calculations it was assumed that four modules would be used,
and that the total desired current would be 1.6 MA over an area of ln'i2 with a diode
voltage of 15 MV. Calculated electron flows will be presented for a number of
diode geometries in the range to satisfy this requirement. The calculations give

some indications of how changes in the geometry affect the character of the beam.

This final report also includes some theoretical work related to megavolt
diodes, and a section dealing with a novel approach for megavolt beam generation in

which a cavity resonator is used as an energy storage element.




II. THEORETICAL ANALYSIS RELATED TO MEGAVOLT DIODES

A.  RELATIVISTIC SPACE CHARGE FLOW

- This section confains a brief review of the equations describing steady state

relativistic space charge flow in vacuum, and serves to establish notation.

The electric field E and magnetic field B obey Maxwell's equations.

v E:p/eo (1)
VxE =0 @)
V:B=0 (3)
VXB="MOJ 4)

In equations (1) and (4), p and j are the ché.rge' density and the current density. The
’ constants €, and K, are the dielectric constant of free space and the magnetic'
O permeability. The electric scalar potential V is defined as
E=-V V : (5)

Using (1) and (5), Poisson's equation is obtained:
2
V'V =-p/ €, (6)

For laminar flow, a velocity field v can be defined so that

i=-pv | M
The equation of continuity requires that

V-i=0 B - 8)

In cylindrical coordinates, the relativistic equations of motion are given by:

d . 22
T ry) ~ré¢ y=- n(Er + VBBZ - VZBG) (9)




d 2 TS S R |
g @0 =-nr(E®, +'vB -vB) | (10)
—d-‘z)u- E +vB, -v B | | 11
at (2N = - mE, + VB, Vg v : L 11

where 1 = Iel/:ttrn0 is the magnitude of the charge to mass ratio for an electron at rest.
The relativistic mass ratio v is defined as:
- Vz -1/2
Y W o (1 -3 (12)

O C

where v is the magnitude of the electronic velocity and ¢ is the velocity of light in
v2+v2+v2,withv =% v =%, andv_ =1,
Z r 'z r 6

il

vacdum. Thus, V_2
The kinetic energy is given by

el V = 52 {m - m ) (13)

where it is assumed that v = 0 at V = 0, Defining a normalized poteritial

.V V. -
U= 2 TV (14)
c n
(12) and (13) give
y=1+1T (15)
and
v 2 U2 + 2U -
) = as)
‘ (1+ v)
In the case of cylindrical symmetry,- none of the vector or scalar fields
defined above are functions of ¢ . In addition, EB = 0, The 8- directed magnetic
field, B, , will always refer to the self-magnetic field of the beam.

6,

This can easily be obtained by applying the integral form of Ampere's law

{equivalent to equation (4) )




—_—

fﬂﬁ-dx=_u01" | | | ' Coan

along a closed circular path of radius r in a plane of constant z:

r _ .
-4 o
_ o Ir,z) _ o/ . :
Byr.z) = o r "t j, (& 2) tdt, (18)

where 1 is the current enclosed by the path of radius r.

In addition to the equations describing the electromagnetic field and the particle
dynamics, a boundary condition must be established at the cathode in order to specify
the initial current density. In what follows, space charge limited flow will always be

assumed so that
E=0 (19)

at the cathode surface.

B. PLANAR FLOW IN A CONFINING AXJAL MAGNETICZJFIEID_

1. Equations of Motion and Current Density

To obtain planar flow in high current diodes, a uniform dec axial mag-
netic field over the entire diode region was considered. It was anticipated that the
external field would tend to offset the effects of the self~magnetic field and thus

prevent beam collapse.

Although the following theoretical analysis of the planar gun is based

upon some fairly restrictive assumptions, several useful results can be obtained.

For the analysis of the planar gun, it will be assumed that Bz is
sufficiently large so that to first order, the_gun resembles a plane parallel diode with
V=yV(z). Thlis, Eé‘ = Er =0, Br =0, and BB is assumed independent of z. Equations
(%) through (11) become:




d . . 2 '
“&;(ry) -rd y= - 77(Vtg BZ - VZBB) (20)
d o. ' ‘
at * o0 = mv, B, ) | @1
at &M = -1 (Eg + vyB)) o (22)
Poisson's equation becomes
2 , _ : .
da’v '
o = -—,o/e0 (23)
dz : B '

The condition of nearly parallel flow requires that the radial acceleration, given by

the RHS of (20), is negligible. Assuming that this is equal to zero:

v B
0 o
S =F =T (24)
z z
The velocity can then be approximated by:
~Yvi vl =y 1+ vE 25
v o v, t Vv =V, { T) (25)
Using (16) and (25),
_ 9 1/2 :
U + 20
v, =c — 2] : (26)
1+77) @+ U ,
Combining (14), (23), and (26) with the relation jZ = =PV,
_ _ ._ \ 1/2
dy 3, *T) 1L+

- AL (27)
dz2 Vnc €o V‘ U + 2U .

The equation of continuity (8) requires that

1 28 1 Py ¥,
T 5r r 8eo 8z : (28)




O

3

Because of eylindrieal symmetry, 3, /36 = 0. Also; since =0, ajz/az = 0 so

that jZ is a constant of the motion.

_ _ - Equation (27), in the limit of v = 0, is identical to that obtained by
Acton? for a plane parallel diode neglecting self-magnetic field effects. When these
effects camnot be ignored, Acton's solution can only be phfysically realized by using

an infinite, externally applied axial field.

Since both jZ and 7 are indépendent of z:

j, ©

| ) Y Y
z (i T2)1/2-

(29)

where jZ(O) refers to Acton's solution for the current density. Equation (29) is, in

fact, a complicated integral equation for jz gince

@ I
=B, /B = -5

Z “or rB (30)
Z

and

i=JS7 -ds . (3Y)

Even though the current denéity becomes quite complicated, the fiow described above
has a simple interpretation near the cathode, Initially, the traj ectories are not
emitted normal to the cathode surface, but make an angle (¢ = tan -1 T) to the cathode
in the # -z plane, On the axis the condition & = 0 holds, whereas at the beam edge

the maximum angle @ o is determined from (30):

, IR . _ _
-1f "ot Y} _
6, =-tan (‘zer)' , (32)
e Z :

where It is the total current and r is the radius of the beam edge.




2, Deviation from Planar Flow

The approximate solution (24) can be used in conjunction with the
integral of (21) (Busch's Theorem) to yield an expression for the radial deviation in

terms of the applied field_BZ.

The integral of (21) can be written as:

nBzr ro 2
VG = >y 1- ? ' (33)

where r, is the initial radius of the trajectory. Defining the fractional radial devia-

tion of the beam edge; i.e., a radial pinching factor, as

r -t _ :
o =( T ) : (34)
)

equation (33), to first order in v, can be written as

B r o
Z 0O
Vy N - 5 (35)
Using (24) and (35),
B, v, 1/2
B = (-—-——— , (36)
z nr, o
or
' : 1/2
. ,u-o I ')/VZ
B = (“———'—) . (87)
Z 2
2m nr, el ‘

equation (37) gives the amount of BZ field required to restrict the radial pinching of

the beam to an amount given by . The requation- neglects space charge forces. Hence

it will overestimate the required Bz'




TN A

/

/
|
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3. The Axial Self-Magnetic Field

' Whén the rotational velocity be‘comes' sufficiently lai'ge, the induced 7

axial self-magnetic field B: must be considered. In the case of no radial motion and

j 0 independent of z, the application of (17) over a rectangular path in the R-Z plane
gives: v
B (r) = - i (1) dt - 38
z_“of.JB( _()
r
From (7) and (24),
g =1, B : (39)
z
Since BQ is constant along a trajectory (o << 1), and jZ is independent of z, j@ is
independent of z as assumed above. Using (24), (38), and (39),
, r
5 e
B, (1) = '“of T®, md o (40)
r

The axial sélf—magnetic field thus vanishes at the beam edge and reaches a maximum
on the axis, Since 7< 0, B: adds to the applied external field. A comparison

hetween (18) and {40) shows that
s . _ '
B, (0) /B, (t)~ (), SRS

so that the induced axial field is a higher order effect than the induced ¢ field.

C. SELF-INDUCED MAGNETRON EFFECTS

Computer studies of high current electron guns show that the eiectron flow can
be divided into essentially two regions. The front portion of the cathode, where
emitted electrons reach the anode, behaves somewhat like a magnetron operating

above cutoff, whereas the back portion exhibits cutoff magnetron behavior. The




changing character of the flow along the cathode is caused by the variation of the self- U

magnetic field, which is equal to zero on the axis and reaches a maximum at the beam

edge.

The cutoff portion of the cathode consists of 2 space-charge sheath of variable
thickness. This is a difficult portion of the flow to mbdél with the coﬁputer, since
a substantial portion of the sheath is often less than one mesh distance thick; this
thickness can give rise to large errors in the numerical procedures. and tends to
create unstable flow conditions. In addition, since a portion of the flow returns to the
cathode in this region, the usual procedures for computing the emission from E=0
are no longer valid. Indeed, the current density _J?is a function of the self-magnetic

field B 5 over the entire cathode.

1. The Conducting Region
The following analysis attempts to By
study the flow near the cathode only, by setting up ® \\ ()
-

a local coordinate system at each point on the
cathode and assuming that the self-magnetic field cathode
surface
B 0 is constant over the region to be studied. The
local coordinate perpendicul'ar to the cathode is
denoted by y, and the coordinate parallel to the i S
i g ytrajectory
cathode is x. The potential is ‘assumed to be a
function of y only. Implicit in this assumption
is that the local radius of curvature of the cathode is much greater than that of the
trajectories in this region, Thus, each portion of the cathode, tor a first approxima-
tion, is assumed to behave as a portion of an infinite linear magnetron with applied

field B 6" The "anode! in this case is a potential surface located at a distance y.

In the local coordinate system, the flow equations near the cathode

are given by:

10




Ja
l‘\._'/;

it Om = -1 (B, - xBy) (42)

d . o T
3% &Y = -nB,y : (43)
Equation (43) can be integrated to give:

%= - CL T -

2 .2 .2 .
Sincev. = x +y , (16) gives

2o ot [ll__i.?_Uz] 2 o @)
@+ vl R

Using (15), (44) , and 45),

¥

il

as [P - a7

"vz'(l = 1) . el E S (46):’
where the cutoff factor f is _defined as

7 (BGY)Z_ -
T2V (L+ U/2)

f (47)

In equation (47), f, V, and U are all functions of y. When f =1, ¥ = 0 so that

motion in the y direction has stopped. A comparison of the expressions for v and

%X shows that =

%?=(1£f) | | (48)

For this geometry, Poisson's equation becomes:
g Y, q

——d,gzvn—dg=-p/eo ‘ (49)
o dy AT

11




The equation of continuity becomes

+ = 0 50
Ix oy R - (30)

Since V = V(y) implies that jX is not a function of x, jy is a constant of the motion.

Combining (46), (49), with jy = p vy,

9 i (1 + 1) |
dU _ M (51)

dy . 2 .2 2
. eOVn‘/c (U™ + 2U) (nyBg)

Unfortunately, (51) cannot be solved analytically, so it is not possible to find jy' This
could be done numerically, however, and would be an interesting problem for future
study. Instead, it was decided to use the non-relativistic form of (51) in order to
solve for jy’ and then make certain assumptions about the relativistic corrections.
This is probably a reasonable approach since in the region of interest near the cathode,
the voltages are usually less than 1 MV. Our solution is similar to that given by

Slater®. The cathode current density can be obtained from the following set of

equations:
I, @ =3, © [ - —f—ﬂ;—f-’-] (52)
p=v1 ) - (53)
1 o) = [ (2;;/21) L lv' LA V31/2 tan * 1; S ] (54)
k=0, +1, + 2 )
f' = p/(1 + p) | (55)

12
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A

In the above equations, f' is the non-relativistic form of f in (47:
2

7 (B, )

2 v

fr = (56)

The parameters p and v are dummy \?ariables-to simplify the writing of the equations.

The first branch 0 = ' = 1 .is generatéd by a combination of the séltitions
fork =0 (0=v =1)and k=~1 (1 =v =0), In the conduction region, this is probably
the only solution that is physically realized. The abbve equations are expressed in
parametric form with respect to v. Given a value for v, p can be solved for using
(53) and (54). Then f' is obtained from (55). Finally, j.'Y is determined from (52)
using f' and the assumed value for v. In (52), jy(O) is the current density obtained

for f' = 0, or no self~magnetic field.

In this manner, the functional relationship

i '=-. 1 05!5
Jy(f) JY(O)F(f)( fr=1) (57)

can be generated numerically and is displayed in Figure 1, A least squares fit to F,
accurate to 1%, gives
F (') = 1.0 - 0.0578 ' ~ 0.7423 f'2 + 1.4871 f'3 - 0.9797 f'4 (58)

with F (0) = 1, F (1) = 9/4rx .

The transition to a relativistic solution is then made by assuining that

the functional form of F remains unchanged, letting f'- f, and interpreting jy )

as Acton's relativistic solution for planar diodes neglecting self-magnetic field effects

.(sincef=0-->Be =0),

Thus:
jy (f)=fly(0)F(f) (0 =f=1 (59)

where f is given by (47).
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If 0 =f =1, the position of y is located inside of the beam; if £ > 1,
v is located outside of the beam; at the beam edge, £ = 1. If y is chosen to be much
smaller than the radius of curvature of the cathode, traj ectories having f = 1 will

generally return to the cathode, thus forming a spéce~charge sheath.

If- £ > 1 and the trajectory reaches the anode, presumably the factor of
9/4n should still be used, although an additional correction is now required since
the potential V(y) is being determined outside of the beam. (The limitations inherent
in finite difference methods reguire that V be measured at a distance of at least one
mesh diagonal from the cathode. However, the sheath thickness, g is often less
than this.) If f> 1 and the trajectory returns to the cathode, still another correction
is needed to account for the multistream flow pattern. Both additional factors have

been estimated and both tend to significantly reduce T

At this point, the question naturally arises as to whether it is possible
to predict, a priori, the beginning of the cutoff region. If f =1, y lies outside of the
beam. If y has been chosen to lie sufficiently close to the cathode, it is likely that
the trajectory will either return to the cathode or at least never travel beyond Vg If
f < 1, this behavior is still possible if Y >y, but ys does not extend to the real anode.
Fortunately, because of equation (48), the transition between the conducting and cutoff
regions occurs fairly rapidly as f — 1, so that f~ 1 is a reasonable choice to describe

the transition.

2, The Cutoff Region

The self-magnetic field, dependent emission current density required
by space-charge limited flow for the conductance region is given by (59).. The proper
form for the cutoff region is, however, an unsolved problem. Certainly F should be
reduced below 9/4n to account for multistream flow. If equal and opposite streams

of electrons are flowing near the cathode, for instance, F should be replaced by F/2,

15




It is thus reasonable to suppose that as f becomes larger than unity, jy(f) —~ 0, Since
the least squares fit to F(f) goes smoothly to 0 at f = 1.35, it was decided to calculate

cathode emission using the following approximate expression:

i D

jy(O) Ff), 0=f =1.35 _ (60)
= 0 ' f>1,35

This meodel for cathode emission allows the computer to determine the edge 6f the

emitting portion of the cathode. The cutoff region is actually generated by 1é.unching

trajectories having an associated current density given by (60). The émission ends at

that point on the cathode where f > 1, 35. Mul.tistream flow which can occur in the |

conduction region is not taken into account.

Another approach used to describe the cutoff region has been to first
use the computer program to ascertain where the cutoff region appears to begin.
Then, on subsequent calculations, the space-charge sheath is simulated by using an
additional zero-potential electrode on the back portion of the cathode .thé,t depresses

the_ potential in much the same manner as the sheath.

The potential at the surface of the sheath is given by setting f(ys) =1

| a ‘/ B, y)°
Vl(ys} = Vn 1+ 7 '—"'"{f—'—“— -1 | (61)

n

in (47):

The space charge density is obtained from {49):
-3/2
D) nB, ¥y
Py = mne B, {1+ ——Vn— (62)

2 2
8 “s

It is then assumed that (61) holds in a region year Y and that for y > Y the potential

obeys Laplace's equation and has the form

o' -y
VZ(Y)=V(yS)+W [V(y)-V(yS)] , (63).

where Vg =y'=y.
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Here y > Vg is some arbitrary distance (near ys)_ at which the potential V(y) is deter-

mined. The form of (63) has been chosen so that V1 (ys) = V2 (yS) =V '(ys).

Setting dV 1/dy = de/dy at y.s, the sheath thickness can be solved for:
3 | ,
1 - \F -@a=1/ |
-y 1 - -2/ _ (64)
L-(y =1 {E-1

where vy and f are evaluated at y and f > 1. If the zero potential cathode surface is

then extended by an amount Yo in the +y direction such that

Yo VO) -y V) ] |
= : 6
Tl Ve - vy | ’ ©9)

the resultant Laplaéian potential will be egual to V (ys) at ys. The éffective electrode
thus establishes the potential at the sheath edge at the value which would have been

produced by the actual presence of the sheath,

A limitation to this approach is that it does not account for the possibility
of current flow out of the sheath electrode, essentially parallel to the cathode surface.
It is, therefore, important to begin the sheath electrode far enough back on the cathode
so as to minimize the neglected current flow. A plot of V (y) as given by (61) within
the sheath region (y = ys) is. compared to the actual values obtained from the potential
matrix of a flow calculation in Figure 27(a) in a later section of this report. The

agreement is guite good.

3. Cathode Curvature Effects

In the case of the toroidal guns investigated, the cathode radius of
curvature is often lsignificant in comparison to one mesh d‘iagoﬁal, thus violating the
Important assumption that V = V (y) over the region of interest. Since storage con-
siderations limit the total number of mesh points that can be used (= 104), this

problem could not be solved by decreasing the mesh size.
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The effects of curvature were determined by rederiving the initial
results of Section II-C-1 for a cathode of circular cross. section. A local system of
cylindrical coordinates (r, ¢) is set up with origin located at the center of curvature.
The equation of the surfaée of the cathode (in a plane of coﬁét-gnt §)is thusr = r,
and the anode is represented by r = T It is further assumed that V=V (r) and
T = 9 j (r), where ? is a unit vector in the r-adial direction. The guantity 4'\ j(r)isa

constant of the motion so0 that

.rc .
eenl(s) e

Both of the cases T, < v, and r, > ra were investigated. In the first cage, r = r, in

(66), in the second case r = T,

Each portion of the cathode is then assumed to be a part of a eylindrical

mapgnetron with applied field B a and have a radius equal to the local radius of curva-

ture. In this way, a general result can be obtained for the cutoff factor.
2,

[ 1+ yx ,

where K = 1/1'c is the local curvature of the cathode. The quantity y is a distance
which is parallel to the local normal and f is given by (47). Note that |yl must be

< 1ifk < 0, The three cases afe:

K <0, concave cathode region,
K =0, planar cathode region,
kK >0, convex cathode region.

Equation (67) is assumed to hold locally so that & can vary from point
to point on the cathode provided that this variation is not too rapid. Since y will be
. equal to 1 or 2 mesh diagonals measured from the éathode surface, the assumption
of space-charge limited flow guar:_a.ntees that the equipotential surfaces more or less

follow the local outline of the cathode.

18
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' ‘_If it is now assumed that F is independent of x, (59) can be generalized
to read:

Iy @) =1 (O FAL ) (0=f =1) (68)

where j‘Y (0) is now Acton's solution for cylindrigal diodes. There is c'eri:ainly some
justification for this. The current-voltage relation for the cylindrical magnetron
has been solved in the limit of cutoff"conditions."‘ The importan.t.result for this dis-
cussion is that for ky < 3, F (1) ~9/4n is.as .obtained in the linear case. Thus, it
seems reasonable to assume that the 'linear' and ”cylindr_ical” F functions are
reasoné.bly close, and that curvature effects are essentially all contained in fx .

Again, this would be an interesting problem to investigate on a rigorous basis.
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III. COMPUTER ANALYSIS OF MEGAVOLT DIODES

A. COMPUTER PROGRAM FOR GUN ANALYSIS

The Varian Electron Gun Analysis Program has been successfully used for
over seven years in the design of electron gﬁns. The main purpose of the program
has been to simulate the steady-state behavior of thermionic cathode guns used for
the production of long cylindrical beams in m1crowave tubes. The program can hendle
electrodes having arbitrary potentials and arbitrary shapes in cylindrical geometry
The effects of both beam space charge fields and the induced circumferential self-
magnetic field are ineluded in the analysis. In addition, a nonuniform dec magnetic

field can also be specified.

1. Program Design

The general design of the program is shown in the flow chart on the
following page. The input to the program consists of a mesh size and a set of closed
boundaries defined by data points at which potentials are specified. Two types of
boundaries are possible: Dirichlet, on which the potential is defined; and Neumann,

on which the normal derivative of the potential is zero.

The program overlays the gun region with a rectangular mesh limited to
104 cells. The quantities of interest are assumed to vary ina relatively simple
fashion between mesh points (stepwise or linear). A number of representative
trajectory origins are chosen at the cathode surface. A trial space-charge is then
constructed, if desired, and Poisson's equation is solved for that potential which is
congistent with the combined effects of the beundary potentials and the space-charge,
The solution is obtained by applying successive over-relaxation techniques to the
difference equations defined on the mesh. The current density to be associated with
each trajectory is then computed, and the trajectories are traced through the gun

region using the equations for relativistic space-charge flow together with a
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simplified model for the self-magnetic field. A new space-charge is then computed
for each mesh cell interior to the beam, uging the trajectory coordinates, velocity,
and associated current density. Finally, the self-magnetic field is computed at each

mesh point.

Next, the program iterates using the new space-charge distribution
to resolve Poisson's equation and establish new potentials and electric fields., The
current density is again computed and the trajéctories retfaced, this time using the
self-magnetic field matrix based on the previous iteration. The entire process is
repeated until either a specified number of iterations have been completed or there is

a sufficiently small difference between one iteration and the next,

2. Cathode Emission Model

The proper implementation of the boundary condition E=- 7 V=0
at the cathode for space-charge limited flow is one of the major problems of computer
gun simulation. The strategy adopted here is to obtain an equation expressing the

electric field near the cathode as a function of the field at the cathode, the distance,

the magnetic field, and the current density. By setting the field at the cathode to
zero, and integrating the resulting differential equation for V, the required current
density can be expressed as a function of potential, distance, and magnetic field.
Most of the theoretical investigations under this contract, presented in Sections II

and III, were related to this important problem.

The program makes use of these results in the following way. At
each trajectory origin, the potential and self-magnetic fields are determined at a
perpendicular distance y. The theoretical results are then used to find the current
density. Since the self-magnetic field at any point is proportional to the total current

enclosed, the current density calculation must involve iterative procedures.

In addition to the provision for space-charge limited emission, the

program can simulate thermally-limited flow by specifying a maximum allowable
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- ~ current density. In those cases where the ihitial conditions of the flow are known
O (or assumed), an "injected beam option' allows the current and initial velocity to be

specified as input.

3. Spac e-Chargé Calculation

Two types of space-charge models are used in the program. The first
type, the "laminar model, " assumes that the flow is laminar and distributes the space
charge between trajectories on the basis of their relative positions and intertrajectory
currents at the cathode. The second type, the '"line model, ' associates a fixed
amount of current with each trajectory and distributes space-charge only to those

mesh cells through which the trajectory passes.

The line model thus assumes no correlation between neighboring
trajectories and is the more appropriate method for treating noniaminar flow. It is
also considerably faster than the laminar model. On the other hand, the line model
can introduce significant errors into the calculation if the ""gaps' in the space-charge

are too large.

4, Self-Magnetic Field

There are also two models used to represent the self-magnetic field:
a laminar model, and a model based on a "current enclosed matrix, ' I{r, z) (see

Equation (18)) obtained from the previous iteration.

The laminar model assumes that the current contained between a
trajectory and the axis remains constant and is given by the initial value at the
cathode, Ic' Provided the beam remains laininar, this method is completely rigorous,
However, the beam becomes nonlaminar so that outer trajectories begin to cross

inner ones, B, « Ic/r becomes too large and results in a "'self-feeding' force that

0
may result in a spectacular beam collapse. This model is normally used for the first

iteration only, and B 0 is usually reduced by some factor to prevent beam collapse.
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On subsequent iterations, the self-magnetic field is obtain’ed from the
current matrix of the previous iteration scaled to reflect the new total current content
of the beam. In the case of convex cathodes, the current flowing through the cathode
must be considered in setting up the matrix. Special care is taken to keep track of
those trajectories which return to the cathode, so that the current matrix will be
based upon the net cathode—anodg current. This treatment, of course, is only
rigorous in the limit of self-consistency. However, it can handle very nonlaminar

beams without difficulty and, in addition, exerts a stabilizing influence on the flow.

5. Averaging Technigues

There are several types of averaging and limiting techniques that can
be used in the program to enhance the stability of solutions and to speed self-consistency.
No general rﬁle can be readily discerned for their optimal use; this may well change
for each new configuration.
It has already been mentioned that 2 maximum current density, jmax’
can be specified as input. In addition, the current density associated with each

trajectory is usually averaged with the value obtained on the previous iteration.

The total current can also be limited by specifying a maximum and
minimum perveance as input. If either of these limits is exceeded on a given
iteration, the current is scaled to the nearest limit by applying a constant correction
factor to each value of the emission current density. * Finally, the space-charge
used to solve Poisson's equation can be any predetermined weighted average of the
last two space-charge calculations. No attempt was made to average successive

current matrices, although this may be a worthwhile approach.

When these various techniques are used, the term "self-consistency"
now implies that not only are several consecutive iterations reasonably similar in
beam size, current, and current density distribution, but that jmax has not been

exceeded and the perveance has remained within the required limits.
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B. PLANAR DIODES WITH APPLIED AXIAL MAGNETIC FIELD

Previous experience with the computation of flows in megavolt-megampere guns’
revealed that a major problem was choosing the proper initial guess as to a beam cur-
rent, beam size, and potential distribution in order {0 obtain convergence to a seif-

consistent iterative solution to the problem. In order to provide a gradual transition

‘from a relatively predictable flow to the one being sought,: an axial magnetic focusing

field was employed in a series of cases with the same electrode geometry and voltage,
but with the magnetic field reduced in steps to zero. The initial guess for the flow could
be adjusted for each successive case according to the results of the previous case (or
cases, using extrapolation). Also, the results with a strong confining field may prove

directly useful since it is clearly possible to employ such a field in practice.

Initially, a computer solution was tried using a planar diode with 70 em
cathode-to-anode spacing and an applied axial magneﬁc field of 3000 gauss. The
emitting surface was circular with a radius of 50 cm. Execution of the simulation
stopped during the first integration since the cyclotron wavelength became too small
a multiple of the integration step. Data for the edge of the beam was printed out
indicating an outer beam radius of 49.25 ¢m, and although the solution was not

converged, this value for the radius appears to be reasonable,

Other values of focusing field used with this geometry were (in gauss): 1, 000,

500, 250, 125, and 0.

The solution obtained with an axial field of 1,000 gauss converged to within
3% of a self-consistent solution after six iteratiohs. Comparison with ideal planar

flow for this case gave the following results for the beam edge at the anode;:
-2
VG /Vz = 1.74 x 10
Y /V =2.33x1072
'z

where Vr, V., and VZ are, respectively, the radial, circumferential, and axial

9’
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components of energy in electron-volts. From these criteria,. planar flow was

eséentially achieved in this case.

Figure 2 is a plot showing the computed flow. For this same gun, Figures 3
and 4 show, respectively, plots of current density versus radius at the cathode and at
the anode, The sharp peak in current density at the edge of the beam results from

arbitrarily limiting the emitting portion of the zero‘poténtial planar electrode.

From Equation (34) of the report referenced on the previous page, current
for an ideal planar gun with a 70 cm gap and a 50 cm radius is 94.5 kA; the computer
analysis gave a current of 137.8 kA. The enhanced cathode emission at the beam edge

accounts for the high current in the computer calculations.

Figure 5 shows the flow for the 70 cm gun with an axial magnetic field of
250 gauss. The self-magnetic field in this case produced a substantial constriction

or "pinch' of the beam, thereby increasing potential depression in the beam.

As the magnetic focusing field was reduced, the convergeneé of the solutions
became worse, Figure 6 is a plot of beam radius and beam current versus iteration
number for the 70 cm gun at 15 MV, with no focusing field. The degree of convergence
can be seen from this plot. Indications are that iteration number 6 is a representative
solution. Computed electron trajectories and equipotentials for iteration 6 of the

70 ¢m gun with no focusing field are shown in Figure 7.

For comparison with the gun using a 1000 gauss focusing field, Figures 8 and
9 show the current densities at the cathode and anode versus the radius with no
focusing field. The current densities at the inner radii of the cathode are substantially
reduced by the increase in potential depression caused by the beam pinch. The
current density in the beam at the anode is greatly increased and appears to be more

irregular (but this may be due to the coarseness of the numerical solution).
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Figure 10 shows beam current, beam radius, and the ratio of the circum-~
ferential self~magnetic field at thé anode to the a.xiai focusing field. Each éurve is.
plotted versus the axial magnetic flux density fof the planar gun computations With
the 70 em electrode spacing. The curves show the reduction in conduction current
which occurs as the beam is allowed to pinch. Note also that thé fobﬁsing field
required to almost elinﬁnate‘ the pinch is about equal to the self-magnetic field which
produces it, The field of 800 gauss _fequired for this gun would be i'eadily achievable
in practice. -The improvements in c:qﬁvergence indicated in Figure 10 for the solution
with no axial field over that for 125 gaﬁss is due to a more optimal choice of damping

factors used in the numerical solution. - -

The ratios of radial to axial and tangential to axial velocity at the beam edge
at the anode are plotted versus the axial magnetic field strength in Figure 11. The
radial velocity monotonically decreases. as the focusing field is increased. As the
focusing field is raised from zero, the tangential velocity increases from zero to a
maximum value (at the flux density for which the curve for anode radius vefsus flux
density has a point of infle_ction), and then decreases monotonically,. Thus, with a
sufficiently high axial magnetic field, the flow can be made to be essentially parallel
to the axis at the anode. A theoretical treatment for confined flows with high self-

magnetic field is discussed in Section II~B.

Calculations were performed for . a 15 MV planar diQde with the interelectrode
spaciﬁg reduced to 20 em. The emitting area was again limited to a rédius of 50 cm,
Consecutive computer studies were made using axial‘focusing field values of 10, 5,
2.5, 1.5, and 0 kgauss. The convergén’ce of the solution was excellent at 10 kgauss
but dete.-riorated as the axial field strangth was reduced. Without an axial magnetic

field, no meaningful solution could be obtained.

The computed electron trajectories and equipotentials with an axial field of
10 kgauss are shown in Figure 12. Though the conduction current is about 1.28 MA,

the flow is nearly parallel' to the ax.i_s and the field 'inside:_the beam nearly independent
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of radius. As a result, the cathode current density is almost uniform, except for a
sharp peak at the edge of the beam due to the arbitrary ending of the emitting area.
The computed current dengity at the anode is plotted in Figure 13, and is similar
to the current density profile at the cathode. The electron {rajectories and equipo-
tentials computed for an axial field of 5,000 gauss are shown in Figure 14. The .-

onset of beam pinch due to self-magnetic field can be clearly seen.

The convergence of the iterative computation became very poor when the axial
field strength was reduced to 1500 gauss. This is evident in the plot of conduction
current and beam radius versus iteration number in Figure 15. The electron trajec-

tories and equipotentials for iferation 8 are shown in Figure 16.

The conduction current and béam radius at the anode are plotted versus axial
flux density for the planar gun with 20 cm spacing in Figure 17. The ratio of the
circu.mferential self-magnetic field 1o axial magnetic field is also shown, Asg com- -
pared with the results for a 70 em spacing (Figure 10), the rate of change of the
conduction current with axial field strength is very high for low values of axial mag-
netic field, "and the values of current from different iterations appear to fall into two
distinct groups. Comparing the plots of (B p /BZ) anode for the 20 cm and 70 cm guns,
it appears that additional cases of intermediate values of field between 1, 500 gauss
and zero might have led to a successful solution of the zero gauss case for the 20 cm
gun. Though this would be an expensive effort and the beam would certainly be ‘
strongly pinched, it might be useful in establishing whether such a flow has a steady

stage solution.

The ratios of the radial to axial and tangential to axial components of velocity
calculated at the beam edge in the plane of the anode, are plotted versus axial flux
density in Figure 18. Note that as the axial magnetic field was reduced, the radial
velocity reached a very high value before the maximum tangential velocity was
obtained. This was not the case with the 70 cm spacing (Figure 11). It is also

worth noting that with axial fields large enough to prevent pinching, the tangential
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velocity is considerably greater than the radial velocity., For the 70 em case, in
Figure 11, the two {ransverse velocity components are of comparable magnitude at

suitable values of confining field.’

C. EXPERIMENTAL DIODES WITH SPHERICAL CATHODES AND PLANAR ANODES

Varian's beam analysis computer program was used to analyze flow in a sphere

and plane diode developed by the Physics International Company. Figure 19 is a
sketch of the diode. First, computations were made for an anode-to-cathode spacing
(A-K) of 4 inches. According to measured resuits furnished by Physics International,
the peak anode current was 60 kA with a peak anode-to-cathode potential of 2.7 MV.

A plot of measured radiation intensity at the anode was also supplied; this plot is
shown in Figure 20. This figure shows the current density profile at the anode except
that the radiation density should be smoother because of time averaging effects and

scattering.

Initially, attempts were made to arrive at a self-consistent solution by assuming
that a region of the cathode with an arbitrarily defined outer boundary emits electrons
in a space-charge limited fashion, High emission at the outermost trajectory pre-
vented the solution from converging with simple space-charge limited flow. When
the emission at the outer trajectory was arbitrarily limited, good convergence was
achieved. Figure 21 shows a well-converged solution with the emission limit set at
220 A/cmz. Only the outermost (No. 1) trajectory was emission limited; all other
trajectories were space-charge limited. The totai current of 63. 2 kA was consistent
with measured results. Nevertheless, the boundary condition of arbitrarily limited
emission seems undesirable. The result of the high edge emission can be seen in the
plot of anode current density versus radiai position in Figure 22. A sharp peak in the
current density profile occurs at the heam edge which is not indicated in the experi-

mental data plotted in Figure 20.
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The Laplacian (zero space-charge) fields at the cathode are in the range of

'10 V/m even on the cylindrical portion of the cathode, 'I‘herefore, field emission

of electrons probably takes place over the cylindrical portion of the cathode as well
as the spherical portion. The cylindrical portion of the cathode is similar' toa
cutoff magnetron whefe_ fhe iﬁagnetic field ié produced by the main diode current.
Therefore, in the spheré aﬁd_ plé.ne‘gun, a sheath of space-charge probably exists
over the back portions of the cathode which depi'esses the cathode electric field to
zero, If this sheath were properly accounted for in the computer analysis, the
excessi{re current in the outermost tréj ectory would not be present.’ A theoretical

analysis related to the sheath is contained in Section II-C.

_ Figure 23 shows an initial trial using an electrode to simulate the sheath along
the cutoif portion of the cathode. The total sheath thickness was predicted to be
0. 935 inch; the distance to the zero-volt equipotential (from the cathode surface)
was 0.367 inch. The portion between the cathode and the zero-potential surface is-
labeled as the sheath on the plot. At its end, the zero potential surface was connected
to the cathpde in such a way that the electrostatic field would be approximately normal
to the emitting part of the cathode surface. Flow for this computation was space-
charge limited and the solution was self-consistent. Total current was 66.9 kA.
The computed current density profile at the anode is shown in Figure 24. It is evident
that the current densityrat the beam edge is still excessive in comparison with the
empirical data for the radiation intensity profile. This is partly due to the excessive

current density computed at the cathode at the edge of the beam in this computation,

Figure 25 shows the flow for a more successful computation of the 4 inch
spacing gun. For this case, a better choice of the angle of the sheath-electrode-
to-cathode transition was us_ed; and the number of cofnputed trajectories was increased
from 10 to 30. Only évery thii_‘d trajectory (plus the last one) is shown in the figure.
Originally the sheath electrode was terminated, assuming that flow to the cathode

surface at the transition was normal. Further study indicated that in this region
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fldw goes through an arc before the program computes the emission current density
and begins to integrate the trajectory. To compensate, the angle from the sheath
termination to the normal was decreased. This reduced the peak in the computed
current density at the edge of the emlttmg area, producing a more reasonable result.
For this case, the flow is.completely space—charge limited, ‘and the golution for the
cathode current density is self—consistent to within 2%. The total beam current had
converged to within 0. 86%: This case was the first where limité were set for the
perveance (aﬁd thus the currents) to restrict thé'_ values from the wild fluctuations
usually presient in the first few iterations. In the same number of iterations, a cal-
culation for the same gun (except using 10 trajectaries) has converged to within 2, 09,
for the beam current. The method bf limiting the current in each iteration to a
specified range proved to be of increasing importance with hig‘her current diodes;
this importan;ce will be sho:Wn in the succeeding sections of this report. Total

anode current is 62.2 kA which agrees closely with the experimentally measured
value of 60 kA, The beam radius of 4.83 inches is also close to the experimentally
measured value. Figure 26 is a plot of anode current density versus radial position.
The agreement with Figuré 20 .is not exceptional, but is better than that achieved
previously. A discuésion %)f the comparison of computed and ekperimental data is
given af the end of this seétion. Figure 27 shows flow from a computef solution in
which the shea.th electrode has been decreased so that the sheath to cathode transition
is at a position 120° from the cathode tip. Emission is calculated to an angle of 116°
from the tip. In this (-Jaseg the convergence of the solution wds not good, but the
result shown in Figure 27 _-can be considered representative of the actual solution.
Total current reaching the anode is 61.9 kA, thus the self-magnetic field is
essentially thé same in the cutoff or sheath region as in the case shown in Figure 25.
The point on the cathode at which emitting electron trajectories actually start to
reach the anode CIOS‘ély corrlespond:s to the sheath edge in Fi’gul;e 25, Thus, the
result shown in'Figure 27 serves to justify the sheath position shown in Figures 23 and
25. Inaccuracies inherent in finite-difference méthods make convergence more dif-

ficult if the electron trajectories remain within a distance of one or two mesh cells
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of the cathode surface. This is one cause of the poor convergence in Figure 27. The
use of a zero-potential surface to simulate the presence of these cycloidal trajectories

greatly reduces computer time and speeds convergence.

The calculation shown in Figure 27 affords a good opportunity to compare the
cutoff niagnetron theory in Section II-C with a numerical calculation, At an angular
position of 90° on the cathode in Figure 27, all elecfrons return to the cathode; thus,
the conditions of a cutoff sheath prevail. Figure 27(a) 'shows potential versus distance
normal to the cathode for the numerical flow calculation compared to theoretical
values obtained from Equation (61). A third curve in the figure shows the potential
variation that would have been present if a zero potential sheath electrode had been
used at the 90° position instead of allowing the cathode to emit. The obsefved agree-

ment is fairly good.

Equipotentials computed for the flow shown in Figure 25 are plotied in Figure
28. The poftion of flow near the cathode adjacent to the sheath electrode is rapidly
pinched away from the normal to the cathode. As a result, the computed space
charge potential depression ié minimized at this part of the emitting surface, as can
be seen by the dip in the 5% equipotential in the figure. This results in a sharp peak
in the cathode current density very near the edge of the permitted emitting area.
This can be seen in Figure 29, which is a polar plot of the cathode current density
drawn in the r-z plane. Zero angle in the figure represents the cylindrical axis of
the diode. A similar plot is shown in Figure 30 for the flow of Figure 27, where a
portion of the sheath is actually computed. A peak in the cathode current density
again occurs near the edge of the allowed emitting area, but this time it lies almost
entirely in the cutoff sheath region, where emitted electrons return to the cathode,
instead of in the conducting portion of the cathode. This indicatés that the peak in
current density is due to the assumptions made in the simulation. The peak in the

curve in Figure 30 would perhaps be completely eliminated if:
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1. All the cui‘rent erﬁanatipg from the sheath that passes near or returns
| to the cathode in the fégion of the peak was taken into account (notice
in Figure 27 that nearlj‘r all returning electrons computed for this flow
do not begin to reach the cathode until after the peak in current density),
and | _

2, the computed emissioh__éurrent density was properly reduced from the
noermal conducting i‘egi'on': value {presently assumed) by the ratio of the
charge density due tog'élutgoing electrons to that due to both the outgoing
and incoming electron:s..;

Thus, the present simulation does not téke into account the reduction in emission

current density due to the potential dé‘p:ressic-n caused by the returning elecirons.

The simulation of these flows could obviously be improved in this area.

Flow for the spherical cathode, planar anode gun with 2-inch spacing is shown
in Figure 31. Calculated current is 81.8 kA and beam radius is 2,27 inches. Again,
a self-consistent solution (within 1%) :was achieved using space-charge limited flow.
The exp_erimentﬁlly measured values for this gun were an anode current of 70 kA and
a heam radius of approximately 3 inchéé}._, as indicated by the radiation plot in Figure
32. Figures 33 and 34 show, respective.ly, anode and cathode current density distr.i-
butions. The cathode current density digfributio_n has much higher values of current
density close to the axis than does the gun with 4-inch spacing. In this region, the

closely spaced gun acts more like a planar diode.

D, EXPERIMENTAL DIODES WITH. TOROIDAL CATHODES AND PLANAR ANODES

These calculations use the cﬁtpff magnetron theory répresented by Eguation (59)
to control the current emitted from théz cathode. With this model, the introduction of
the sheath-simulating electrode is hot_ necessary. Upper and lower limits for the
perveance were used here, as in the previous section, to reduce large changes in

total current until the solution approa_dhes self-consistency.
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A toroidal cathode, planar anode gun designed by Physics International for A
which empirical data was available was analyzed using the improved program. Cathode -
torus minor diameter was 2 inches, cathode-to-anode spacing was 8 inches, anode
potential was approximately 4.5 MV with anode current approximately 98 kKA. Figures

35 and 36 show a sketch of the gun and anode radiation intensity, respectively,

The Laplacian field distribution was computed as is shown in Figure 37. Note
that the spacing from the cathode to the 5% equipotential indicates that the electro-
static field is highest at the top of the toroidal cathode, which would tend to produce

the strongest emission from this region.

A good computation for this relatively low impedance gun was difficult to obtain,
and proper choice of the initial conditions was essential to avoid wild oscillations and
disruptions in the solution, There is some instability in the final solution shown in
Figure 38, which is a plot of conduction current versus iteration number. Current

limits of 123.1 and 127,9 kA gave a solution self-consistent within + 1.9%. One

.

7o

Y K
oy

might question whether limits set on the flow forced the solution to some inconsistent
value; however, as the plot shows, in iterations 6, 7, 8, 9, 11, and 12 the currents “
computed were within these limits, and in iteration 10 the current was barely outside

the limits.

DPlots for iterations 9, 10, 11, and 12 of the flow are showr_1 in Figures 39, 40,
41, and 42. The flows ploited in Figures 39 and 42 would appear to bracket the solution
on the small beam, high current side, while those in Figures 40 and 41 bracket it on
the large beam, low current side. In the model used, trajectories are launched even
if no current is associated with them. Crossed field effects are simulated by gradually
reducing the emission current to zero as the self-magnetic field exceeds the value for
cutoff, in accordance with Equation (59). Considering the center of the torus as the
origin of a polar coordinate system, and the normal to the anode as zero angle,
emission from the torus was allowed in the computation from -80° to 230°. The effect

of the crossed electrostatic and self-magnetic field limited emission in this computation
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to the surface included betweeil the angles 170° and -80° , Those trajectories in the
region from 230° to 170° (which carry no éurrent) pass very close to the cathode sur-
face. They serve to show the behavior of electrons in the ""sheath." In most interations,
the trajectory from 230° returns to the cathode. Inaccuracies inherent to finite-
difference methods introduced large errors for those trajectories passing very close

to the cathode surface., The traj"ectory shooting out nearly tangent to the cathode surface
in Figure 42 (iteration 12) resulted from these numerical errors. There was no current

associated with this trajectory, so it could not affect the solution.

Figures 43 and 44 show anode current density versus radial position for,
respectively, iteration 10 and 11 of the solution. Qualitatively these plots are similar
and resemble the plot of radiation intensity (Figure 36). For iterations 10 and 11, the
values of conduction current used were 123.1 and 123.4 kA. The variation in total
current is slight, yet the variation in anode current density at the axis and at the

beam edge is large.

In Figures 45, 46, and 47 the current density at the cathode is plotted in
polar coordinates for iterations 10, 11, and 12. Zero angle is in the direction of the
anode. An examination of these plots shows that current density is highest on the
top and back side of the cathode surface. The flow from the back of the cathode
follows an arc which passes close to the cathode before continuing to the anode. The
flow in this region is very complex, since it is the result of very strong cross-field
etfects approaching but still below magnetron cutoff. In the actual physical flow,
the emission current density in this region would be directly affected by cutoff elec-
trons returning to the cathode from the sheath of charge in the region of magnetron

cutoff,

In this region, the computed current density reaches a maximum and then has
a very pronounced inflection point (at about 130°). It is not clear from the work per-
formed to date whether this should be expected, or is a consequence of inaccuracies

in the simulation. It would be desirable to try to further improve the simulation of
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cross-field effects on emission to improve the accuraéy of the computation, and to
determine if this would result in an improvement in convergence. It would also be
desirable to determine whether the difficulty of obtaining a cénverged solution for such
high current, low impedance flows is purely mathematical, or whether it is a conse-

quence of an inherent physical instability associated with these flows.

Some insight into the nature of the instability can be gained by comparing
Figures 45 through 47, One finds that the variation of current density with angle at
the cathode 'is much more similar between iterations 11 and 12, which had dissimilar
beam currents s;md radii, than between iterations 10 and 11 (Which had similar beam
currents and radii). Over most of the cathode surface, the current density profile
for iteration 12 looks like a scaled-up version of the one for iteration 11, which
explains the increase in current. This increase must have been due to the relatively -
low space charge densities in the larger beams of the preceeding two iterations, 10
and 11 (both have some influence because of space~charge damping). A reduction in
the beam size results, due to the increased self-magnetic field produced .by the higher
beam current. The difference in the shapes of the cathode current density profiles
of iterations 10 and 11 are due to the use in each iteration of the matrix of current
enclosed (within a given radius) from the previous iteration, scaled by the ratio of the
new to the old values of beam current, to determine the self-magnetic field. The
error due to a moderate change in beam radius and beam current from a previous
iteration, produced for example in iterations 9 or 11, combined with the space~charge
damping, must almost offset the tendency for the beam current to change in the next
iteration due to the change in overall beam size. This is required to explain the
similarity in the results for iterations 10 and 11, 8 and 9, etc. (see Figure 38). The
weighted averaging of the space-charge in this case utilized 35% of the values from
the preceeding iteration plus 65% of the new values; 35% is high enough for this
averaging to have possibly been a significant factor in causing the solution to occur
in consecutive pairs of similar itex_'ations. However, both the space-charge and the

self-magnetic field errors shouid be in the direction to reduce the amplifude of the
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variation of the pairs of similar solutions about the self-consistent solution (particu-
larly the variation to a smaller beam), and therefore would appear to be desirable
until an effective means of improving the convergence is found for compufing low

impedance relativistic guns,

E. CALCULATIONS RELATED TO GRADED INSULATOR DESIGN

A study was made of the shank aﬁd fnsulator portion_ of the Physics International
torodial cathode gun. The objecf of this study was to determine if field emission from
the shank would cause electron bombardment of the graded insulator. Figure 48 shows
the computer solution piot; the first section of the graded insulator has been drawn in

for clarity.

Measured anode potential for this gun was 4.5 MV; anode current was 98 kA,
To simulate field emission, the beam injection feature of Varian's beam analysis
computer program was used. All trajectories were injected normal to the shank
surface at a kinetic energy of 6.6 keV. Trajectories 1 through 26 each contain 4 A,
trajectories 27 and 28 each contain 1 A, and trajectories 29 through 32 each contain
24,475 KA to simulate flow from the actual cathode. The geometry of the region close
to the anode (where the large current was injected) was altered from that of the
original gun to simplify the calculation, Injection along the shank back to traj ecto:_c-y 1
seemed deisrable since the electrostatic field in this region was 1.24 x 107 volt/meter.
The space-charge potential depression was negligible over the shank surface leading
up to the discharge gap. Asa résult, the cyclotron radii are at their maximum
posgible values, to provide the pessimistic limiting solution, Note that trajec.tory 1

passes within 0, 100 inch of the spacer.

Each of the trajectories from 1 through 26 either describes a cycloid and
returns to the cathode surface, or continues a cycloid curve until it reaches the anode.
Only those trajectories in the region of the highest electrostatic field (trajectories 27

through 32) pass directly to the anode, without cycloiding,
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To simulate inductive effects at the beginning of the pulse, further calculations
were made with the effect of the self-magnetic field scaled by 1/2 and by 1/4 of its

steady-state value; the results are shown in Figures 49 and 50, respectively.

F. FIFTEEN MEGAVOLT TOROIDAL GUN COMPUTATIONS

On the basis of previous attempts to design single module electron guns pro-
ducing currents of greater than one megampere, such as those discussed in the section
on planar guns, it was concluded that the best approach to designing such a high current
gun (witho-ut using an external magnetic fo_cusing field), was to use an array of gun
modules. Since each module wéuld include a return conductor for the conduction cur-
rent, it would be isolated from the self-magnetic field produced in the other modulies.
Using four such modules, a current of 400 kA in eaéh would yield a total current of
1.6 MA. Studies of radiation patterns for various size beams of varying convergence
for such an array were conducted at Physics international. The results indicated
that to efficiently provide uniform x.—ray illumination in a one meter cubic volume
uging converging gun modules, the beam radius should be approximately 40 cm (for an
idealized beam with uniform current density). The best radiation uniformity was
obtained for flow with normal incidence fp the anode. The geometries used in the
computations to be discussed were based on the above considerations and on design
preferences and limitations suggested by Physics International. It was assumed that
the optimum computed beam size would fall in the range from 40 to 46 cm, or 16 to

13 inches. - '

The basic gun module geomefry considered is shown in Figure 51; it is some-
what similar to the one shown in Figure 35. The module gun voltage is 15 MV, and
several dimensions are considered open to optimization. These include the cathode-

to-anode spacing (S), the torus minor diameter (Dt)’ and the mean torus diameter (DM).

Computations were made using a number of variations of these parameters,

The combinations are listed in Table 1.
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TABLE I
VALUES OF PARAMETERS USED IN COMPUTA TIONS

Mean Torus Diameter | Torus Minor Diameter | Cathode-to-Anode Spacing
DM Dt S
(in.) {in.) (in.)
21 4 12, 14, 18, 24
21 3 24
21 . 2 ' 18, 24
14 4 10, 14

The behavior of the iterative computations for these guns was very unstable.
Despite considerable effort for some of the cases in Table I, no completély self-
consistent solutions were obtained. However, the solutions give approximate informa-
tion on beam currént and beam flow at the anode. Use of the perveance limiting fea-
ture proved invaluable for determining the range in which the solution for a given gun
must ekist, and for obtaining a number of iterations for the flow. When the upper
limit on perveance (and therefore current) was set too low, the space-charge potential
depression was less than that for the self-consistent solution. As a result, the com-
puted perveance (and ‘current)‘ would be consistently higher than the upper limit set.

An example of this behavioi- is shown in Figure 52 in a plot of the computed current
and the current limit from a calculation for the 15 MV gun module, ‘with values of

B DM’ Dt’ and S of 21, 4, and 12 inches. The value of the ‘computed current for the
first iteration is off the plot and therefore not shown.. A second curve ploited in the
figure is the result for the same gun when the upper current limit is prescribed too
high, For this case, the space-charge potential depression becomes excessive and
drives the potential to negative values over a substantial portion of the cathode, cutting

off possible emission from that portion in the next iteration.  If the calculation is

continued, the emitted current computed in the next iteration may be much too low, and
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the iterative solution then becomes very unstable. The computation is usually made

to terminate if more than about one-third of the trajectories are cut off.

Thus, by trial-and-error adjustment of the upper perveance liﬁlit the range
in which the self-consistent value should be found can be determined, \and corresponding
approximations (however ci’ude) to the current flow can be computed. In particular,
the relatively well behaved results, when the current limit is set too low, establish an
upper limit to beam -size and a lower limit to beam convergence at the anode for the
self-cons-isfent solution. A lower limit to beam size is not necessarily established
by the non-self-consistent solution obtained with the current limit too high due to
errors in the self-magnetic field distribution (derived from the Iﬁreceeding iteration)
and in the electric field (which will be too high when the computed current is higher

than the self-consistent value).

The first computations were performed for values of DM’ Dt’ and S of 21, 4,
and 24 inches. A plot of the flow that perhaps is most representative is shown in
Figure 53. In this case, the upper perveance limit was set slightly low. The actual
flow should therefore be slightly more convergent. The self-consistent beam current
is estimated to be in the range of 523 to 580 kA for this gun. The flow should be
converging only moderately at the anode, very likely in the desired range of beam
radius of 16 to 18 inches. The computed flow tends to be too large by an additional
amount due to the presence of a small error in the calculation of the self~magnetic

field above the cathode; this error was eliminated in the final calculations performed.

In Figure 54, the most representative flow is shown plotted for the 12 inch

spacing case with D__ and Dt as they were in Figure 53. The plot shown is for itera-

tion 6 for the low oul\lilrent limit case of Figufe 52, The self-consistent space~-charge
limited current is much higher than the desired 400 kA for this case, as expected
since it was already somewhat high with twice the axial spacing. The cathode current
density is much more uniform than for the large spacing case, as can be inferred by

comparing the spacing from the cathode to the first equipotential plotted in the two
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fig.ures. The emission tends to be uniform in this case Since the distance from the
cathode to the anode is nearly the same as to the outer conductor, whereas in the
first case it ié much greater. With the higher self-magnetic field for this case, the
beam size at the anode is much smaller, no more than 12 inches in radius. The con-
vergence angle is also greater at the anode, Thus, if such a gun actually operates
fully space-charge limited, a lower perveance design than that' for this case is clearly

desirable,

The ranges for the seif-consistent space-charge limited current for the cases

M equal to 21 inches and Dt equal to 4 inches and 2 inches are plotted in Figure

55. Toward the end of these studies it was learned that spacings greater than about

with D

20 inches were not considered practical by Physics International for the converging
module geometry being utilized. Thus, a geometry utiliZing a relatively small value
of Dt appears to be desirable to keep the beam current from being too large. Ranges
for self-consistent current versus torus minor diameter for DM equal to_ 21 inches
and S to 24 inches are plotted in Figure 56. From this curve it would appear that a
value of from 1 to 3 inches would be optimum for providing a space-charge limited

current of from 400 to 500 kA. With an 18-inch spacing these values would increase

by about 10%, from the data in Figure 55.

The two computations made with DM reduced to 14 inches (a dimension con-
sidered as an alternate to 21 inches by Physics International) were both done with an
upper limit on current of 523 kA. The resultant behavior suggested that the seli-
consistent current would be higher than this value with a 10-inch spacing, and lower
with a 14-inch spacing. Comparing to the curve for Dt equal to 4 inches in Figure 55,

this indicates that the current drops as D_. is reduced, as one would expect. A flow

M

for the 10-inch spacing case is shown in Figure 57. The convergence of the beam at

the anode in the figure is probably slightly less than would occur for a self-consistent
flow. From this calculation it would appeéar that the beam radius would be less than

6-1/2 inches, much less than the desired 16 to 18 inch value. The beam would also

25
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be converging relatively steeply at the anode. It would thus appear that the optimum
value of DM is substantially larger than 14 inches, and probably somewhat closer to

21 inches.

A representative flow solution for a case with 21 inches for DM’ 2 inches for
Dt and g .24-inch spacing is plotted in Figure 58. The upper current limit was 465 kA
and the computed beam current for the iteration shown (number 4) was 447 kA, The
computed beam radius at the aﬁode was about 17 inches, and the beam was converging
moderately at that plane, The solution had not converged but was space-charge

limited.

Considerable effort was expended in an attempt to obtain a gelf-consistent
solution for a 15 MV toroid with DM = 21 inches, Dt = 2 inches, and S = 18 inches.
The results of this study are presented in Figures 59 - 73,

It was not possible to obtain a completely self-consistent solution for this case
as the flow was quite unstable. Since these investigations represent an entirely new
realm of currents and voltages, it is as yet unclear if these instabilities are intro-
duced through our basic assumptions or numerical procedures, or are in fact

physically real,

Figures 59 - 63 show the flow Iﬁattern for iterations 5 - 9 for a typical case. |
By iteration 9, the beam has become very unstable so that the lower portion of the
cathode is cut off due to negative electric fields, and a number of trajectories are
cycloiding in the vicinity of the axis near the anode. This is somewhat surprising as
the perveance (Figure 69) appears to be stabilizing within the chosen limits prior to
iteration 9. The high values of the perveance obtained on the initial iterations are due
to the fact that the solution is started using a Laplacian field (no space-charge). This
technique was often used on the gun computations because of the difficulty in choosing
a reasonable initial space-charge guess. Moreover, approaching the actual current

from "above' seems to help the stability problem.
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Figure 64. 15 MV, 18" Gun Polar Plot of Current Density at Cathode,
[teration No. 5 e
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' ' In Figures 64-68, polar plots of the current density at the cathode are given
for iterations 5-9, The maximum current density occurs between 60° and 90° and
is relatively stable. The hottom region of the cathode, however, is very unstable,
the current density initially growing, then diminishing, and finally being entirely cut
off. The trajectory current contributions at the anode for iteraj:ions 5-7 are given in
Figures 70-72 and the sum of these contributions is given in Figure 73. This isa
further graphic display of the unstable nature of the solution, Indeed, even though a
509 space-charge averaging is used, .the ﬁajor parf of the beam essentially avoids

that regidn through which it passed on the previous iteration.

Because of the instability present in the computer solutions, several different

approaches were used in an attempt to achieve seli-consistency.

The sensitivity of the solution to both changes in the mesh size and in the
.boundary potentials along Z = 0 was tested. In both cases, the solutions were

essentially unchanged.

Another interesting expe.rinient involved the use of "minor iterations' on the
self-magnetic field. Since the self-field forces appear to be dominant at these current
levels, it was decided to make several trajectory iterations while holding the electric
fields and current emission fixed, and allowing only the self-magnetic field to change,
This produced an extremely unstable situation. After one or two iterations, the beam
would either collapse to the axis or become hollow out to a large rétdius, depending
upon the starting conditions. The dependence on starting conditions is illustrated by
the following arguments: Suppose that the total current It is held fixed at a value
larger than that required for stable flow. T%le gelf-magnetic field B g~ It/r will then
collapse the beam to the axis. On the other hand, if It is held at a value smaller than

that required for stable flow, the self-magnetic field will diminish itself and the beam

will move away from the axis,

116




Finally, a calculation was made in which the self-magnetic field B g Vas

replaced b'y o B, and 5 was gradually increased from 0.65 to 1.0 after a number of

iterations. It wz.s hoped that by "turning on" B o gradually, and approaching the
correct beam size from above, the instability could be avoided. The full self-field

was reached on iteration 7 and by iteration 9 the solution had mgch the same appearance
as Figure 63, There was insufficient opportunity, however, to fully explore this

approach and it may yet prove to be of value,
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IV. REMOVAL OF ENERGY STORED IN A CAVITY RESONATOR -y
BY INJECTION OF AN ELECTRON BEAM b

A. ANALYSIS

1. General Description

This section will be concerned with cavity resonators formed by metallic
conducting walls wfhich essentially completely enclose a vacuum region containing
stored energy. The energy is in the form of time varying electric and magnetic fields.
The transier from completely electric to completely magnetic energy occurs twice
during each period'bf the resonant frequency. To the extent that the cavity is an
efficient system for storing energy, the total stored energy can be gradually built up
over a relatively long time from a low power source. If, then, an electron or other
charged particle beam is suddenly injected into the cavity, the energy can be trans-
ferred to the_ electron beam to produce a relatively short high power beam pulse., In
this manner a power gain has been achieved with a corresponding reduction in pulse t)

length,

Considerable insight into the operation of such a system can be obtained
by éonsidering the equivalent circuit model shown in Figure 74. The figure indicates
a two-wire transmission line of characteristic impedance Zo’ having a length L =
3\/2, with a short circuit termination at each end. It is assumed that the section of
line is lightly coupled to an rf source of wavelength A, If the line has very low loss,

the voltage can be described by the equation®
V= V1 cos (wt - Bz) + V1 cos (wf + 52) {69)

where the first term represents a wave traveling in a positive z direction and the
second term a wave traveling in the negative z direction; 8 is the propagation constant

defined by 8 = w/c. In the steady state. gituation, any power loss in the line is compensated
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Figure 74. Equivalent Circuit model for
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by a small amount of power flowing from the source, and the line voltage amplitude
remains constant with time. The switch and the resistor in the figure simulate the
loading effect of an injected electron beam. If at some instant of time the switch is
closed, then the resistor of magnitude Zo/ 2 is connected across the two-wire line
midway between the ends. A resistor of that value matches both halves of the line,
i.e., waves fraveling toward the midway point are completely absorbed in the
resistor., The voltage developed across the resistor will be sinusoidal with time for
a time interval of 1 = 8L and then will abruptly drop to a value near zero depending
on the weak coupling to the rf source. The phase and amplitude of the resistor
voltage will be the same as the voltage at the midpoint of the line prior to the switch
closure. The to1_:a1 time duration of the resistor voltage is the propagation time for a

wave to travel from the midpoint to one end and back to the midpoint.

For the case shown in the figure, the total time duration of the resistor
voltage is 1.5 rf cycles. If the line length had been chosen at 1/2 ) instead of 3/2x,

the total pulse time for the resistor voltage would be 0.5 rf cycle.

In a practical embodiment of such a system, the two-wu'e transmission
line would probably be replaced by a waveguide or a radial transmission line. Such
lines have dispersive properties which will change the behavior of the system. A
pﬁrticle beam behaves like a resistor only to a limited extent. Such effects as space-

charge, beam cross sectional area, and particle transit time through the resonator

structure will need to be considered in predicting the performance of practical systems,

Since it is proposed that a vacuum be used as the energy storage medium, field

emisgion and multipactor effects must also be considered.

2. ™ 010 Cylindrical Cavity

The TM0 10 cylindrical cavity has a number of properties which are
ideal for an energy storage system to be discharged by an electron beam. The fields

in the cavity are given by’
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| E, = Endo (kr) cos (wt) B : (70)

H¢ = jVe/u Em Jl (kr) cos (wt) (71)
where J o and J ; are Bessel functions, Em is the electric field amplitude, and k is

the wave vector defined by

k= 21 /A , | (72)

The cavity resonant frequency depends only on the diameter according to the relation

o}

kD=2p ' (73)
1 , .

Where D is the diameter and Po,; 18 the first root of Jo.

Since the electric field is axial and has maximum amplitude on the
axis, the cavity is well suited for injection of an axial election beam at one end of the
cavity. The length of the cavity can be selected to satisfy transit time requirements
or output kinetic energy reqﬁirements since the length does not affect the resonant
frequency.

The TMO 10 cavity can be considered as a section of radial transmission
line shorted at the outer edge. When the beam is injected on the axis, it will form
an essentiaily resistive termination for the radial line. To avoid reflection from the
resistive termination, the beam impedance would normally be chosen to match the line

impedance. Certain difficulties arise in attempting to do this.

Voltage, current, and impedance for the radial line are defined in the

following manner:

V = E L (74)
Z Z

I = o rH | (75)

Z,=V,/l =EL/x rH (76)
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For the radial line, the characteristic impedance defined above is not constant. as in

a conventional transmission line, but rather varies in the following manner” :

2 2 '
oA \/th. 1 ‘/ I (kr) + N_ (kr) -
oL € kr Jg (kr) + Ni (kry - ' '

The impedance given by this equation is plotted in Figure 75. Transit time effects
require that the cavity length be typically less than a quarter wavelength (L = A/4).
When L = 0. 1x, the radial line impedance varies from 16.5 Q at the outer wall

(kr = 2.405) to infinity at the axis. It is obviqus that an infinite resistance at the axis
will not remove any energy from the cavity. Furthermore, it does not appear possible

to determine the proper beam impedance by matching arguments alone,

To determine the proper beam impedance, we will equate the outpui
electron beam enérgy to the cavity stored energy. We will assume that the beam
voltage is a sinusoid with a time duration of one half rf cycle and a peak amplitude
equal to the cavity voltage on the axis reduced by a transit time factor M. If it is
assumed that the beam has constant resistance, then the current is also a half

ginusoid, The total energy in the output beam puise is
Ub = be Ib dt (78)
. .nu - 3
1 .2
= - {' VmImgln {wt) d {wt)

4 m ™ m

where V. =ME_ L (79)
m m

The stored energy in the cavity is

1 2 : :
UC—ZE‘{‘ EZ dv (80)
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where V indicates an integral over the entire cavity volume. Then we have

D/2 9
U=7r€f ES J
o m

[+ 20 ]

(kr) rdr (81)

2

2
LI ()

1 2
—weEmD
1

8
Equating the beam energy to the cavity energy we get

A%
_m

I

A4t 20 (82)
L € 2 2

m M P. I (P,)

1 1

1
2

The quantity Vm/ImMz‘is the equivalent loading impedance of the beam preéented to
the cavity including the transit time reduction factor, M. The Bessel function root
has the value of PO1 = 2.405. The right hand side has a value of 1520 ohms. A
comparison of the beam impedance given above and the radial line impedance given
in Figure 75 indicates that impedance matching is achieved by making the beam diam-
eter such that kr~ 0.04. The effect of space-charge in the beam has not been con-
gidered in this choice of beam diameter. Sbace-charge will be considered in a later

section.

The amount of rf power required to maintain the cavity stored energy
prior to injection of the beam is related to the Q of the cavity by the following equation
wU
C

P=— | (83)

where P is the steady state input power to maintain the stored énergy Uc. For the

TM, .. cavity the Q is given by’
010 .
A PO
1
671 (2+D/L)

Q= (84)

where 6 is the skin depth, given by
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6= —— I “ (85)

varfud

and ¢ is the conductivity of the cavity walls.

The total energy which must be supplied by an rf source to fill the
cavity will always be greater than the amount of stored energy just prior to the beam
pulse because of losses during the fill time. Storage efficiency will be defined as the
ratio of the available cavity energy to the total energy supplied by the source. This
storage efficiency will depend on the degree to which the cav'ity stored energy is
allowed to reach its steady state value. If we define a fill time as

- 2Q

tf )

(86)

then for t = 0.4 tf the storage efficiency is 60%6 , and for t = tf the efficiency is 41%.

3. Electric Field Limitations

In determining the maximum electric field that can be sustained between
metal electrodes in a vacuum environment, two effects must be considered. These
are ficld emission’ and multipactor®. The current density of field emitted electrons
increases very rapidly for local electric field strengths greater than 109 V/m. In
general, the local electric field at a surface, on a microscopic scdle, is much greater
than the applied field calculdted on a macroscopic basis. The ratio of loeal to applied
field, called the field enhancement factor, has a value of the order of 100 for most
surfaces. Therefore, the applied field must be kept near 107 V/m or less to completely
avoid field emission. By careful processing of the surface, it is possible to operate

at fields of 5 x 107 to 108 V/m'? 9,

The energy storage density for electric field storage is given by

12
U =3 cE (87)
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For a field strength of 107 V/m which results in negligible field emission problems,

the energy storage density is 443 joules/ms. For a field of 108 V/m, which is probably
a practical upper limit when there are fields normal to a surface, the storage density

is 44, 300 joules/ms. When energy is stored in an rf cavity resonator, the above
storage densities have to be reduced because the electric field has reduced amplitude

in some sections of the cavity., For the TM cavity, the effective energy density

010
reduction can be obtained from equation {81). The resulting reduction factor is J i

(Pol) which has a value of 0. 27,  Other rf resonators have similar factors..

The multipactor. effect is a resonance phenomenon involving secondary
emission of electrons. Considerable analysis is available for the case of rf electric
fields between parallel plane electrodes. A multipactor discharge can occur when
electrons emitted at one electrode are accelerated by the rf field to cross the gap to
‘the other electrode in a time comparable to one, or more, rf half cycles. In that case,
secondary electrons at the second electrode will be accelerated back to the first
electrode by the rf field of reversed phase, and the process can continue for many
cycles. If the secondary emission coefficient at the surfaces is greater than unity,
then a high current discharge can build up thereby dissipating the energy in the rf
fields.

For paraliel plane electrodes with a given gap spacing there is generally
a range of electric field strengths over which multipactor will ocm{ma . The minimum
field boundary of the multipactor region is given approximately by

2
E  -—%@ Lo (88)

min
2
e\ﬁl+ 7r2(2n+1)

where n is the order of the multipactor discharge (2n + 1 = the number of rf half

cycles per electron transit). The maximum field boundary is given by
2
_w Lm

Emax T 2e

(89)
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In most cases it is sufficient to consider only the n = 0 order of discharge. In that

case, multipactor can occur over about a two-to-one range of electric field.

Multipactor can be inhibited (or enhanced) in a number of ways. These
include surface coatings to reduce the secondary emission coefficient, variations in
the planar geometry to prevent cumulative effects, and magnetic fields to alter electron

trajectories.

4. Space-Charge Effects

Space-charge depression of potential will impose a limit on the current
density which can travel across the cavity. rAn estimate of .the current density limits
can be obtained by neglecting the time variation of the fields, neglecting any injection
velocity, and considering the cavity as a space-charge limited paraliel plane diode.

For the non-relativistic case, the Child-Langmuir law applies:

g=2% 422 v'/?
9 © m L2

(80)

where J is the maximum current density, e is electronic charge; and m is the mass.

If there is a finite initial velocity of the injected beam, the above

equation is mgdified to.the form

3 _
——— - _3/9 V. '
4 2e V i
J—ge\/m - (1+Vv) ©1)

L

where Vi is the beam voltage at injection. If the injection voitage is ten percent of the
final voltage, the limiting current density is increased by less than three percent;

hence, the effect of initial velocity is negligible.

For relativistic beams, an approximate solution for the.case of zero

initial velocity can be written in the form?
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2m o2 _ oV . 2 o
J=—7>— ‘/ = 1 +gf % - 0.8471 (92)
e L . moc + 1

It is of interest to relate maximum current density to maximum electrlc field strength

If we subst1tute L = V/E into the Child- Langmulr law, we get

2
J=§ ¢ -H—? E_ (93)
VAT
2
or J=2.33x10° E:
Vv

For E = 107 V/mand V=15 x 105 V, wegetJ=3.3x 105 A/m2 or 33 A/cmz. If E
is increased to 5 x 107 V/m, then we get a maximum current density of 825 A/cm.2.
It is concluded that current densitites can be used which are large compared to those

obtainable from conventional thermionic emitters.

5. Transit Time Reduction Factor L)

When an electron passes through a region containing an rf electric
field, the change in energy of the electron is generally less than the product of the
distance traveled and the peek electric field because of the sinusoidal time variation
of the field. The ratio of the energy gained in electron volts to the field-distance
product is generally called the transit time reduction factor. Considerable informa-
tion is already available!® for the case where the change in energy is small compared
to the initial electron energy. However, for the system of interest here, the energy

gain will be large compared to the initial energy.

The case of a uniform rf field between planar electrodes at z = 0 and
z = L will be considered. Nonrelativistic equations for which a closed form solution

can be readily obtained will be used. The force equation is then

d
md—:= -e E cos (wt - ¢) - (94)
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where ¢ is the relative phase of the field at t = 0. If we assume that v=0and z = 0

at t = 0, then integration of fhe force equation gives

mvy = Ef-[sin (wt - ¢) + sin ¢] (95)

and another integration gives

mz = 9—%— [ cos (wt - @) - whsing - cos o] (96)
w
The velocity at the position of .z = L will vary depending on the initial phase, ¢. It
can be shown by d_ifferentiation or by physical arguments that maximum energy gain
occurs when th'_= 2 ¢ where tL is the time for which z = L. Substitution of this
optimum ¢ into the above equation gives

: 2eE .
my, = - =" sin (th/Z) _ (97)
nd mL = - (208 t_ si t. /2 98
a = 5 wty sin (wt /2) . (98)
[€3]

We can elimihate wt_ between these eguations with the result

L

mv. w
owho L :
sin v = 5o b (99)

Now we are in a position to evaluate the reduction factor which is by definition

M= - (100)

Substitution of equation (99} into this definition gives the result

ofir)
()

M = (101)
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It is of interest to compare this result to the result when there is negligible energy | U

gain across the gap. For the case of negligible energy gain we would have?

. wl
sin ( 2y )

MO = ——((;—1-)—- | | (102) .

2v

where v is the velocity which is essentially constant throughout the gap. Hence, we
can apply results for the constant velocity gap to the accelerating gap case, provided

we use the average velocity in the gap rather than the final velocity.

Transit time reduction factors calculated using equation (101) for =
3.2b cm gap are shown in Figure 76 as a function of beam voltage. An exact point
using a computer analysis which is relativistically correct is also shown for comparison.

The error in the nonrelativistic analysis is not large in this range of voliage.

B, EXPERIMENT

1. Design Considerations

The goal of this experiment was to demonstrate the feasibility of using
rf energy storage to produce short pulse, high energy electron beams. Since it was
a‘ feasibility demonstration, the emphasis was not placed on achieving particular
values of current or voltage, but rather on minimizing the cost and complexity of

performing the experiment.

The TMO 10 cylindrical cavity was chosen as the most appropriate
cavity configuration. It was decided that a non-reentrant cavity would be used. A
frequency of 720 MHz was chosen as the resonant frequency. This frequency was a
compromise between lower frequencies Whioh would make the short pulse instrumentation.
easier, and higher frequencies which would decrease the size and cost of the experi-
mental device. At 720 MHz, the Techtronix 519 oscilloscope can be used as a

monitor for single pulse operation. To use more conventional oscilloscopes would
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} require going down in frequency by about an order of niagnitude which would increase
Q the size of the experimental device by one order. Furthermore, a pulsed power source
of 20 kw peak was readily available for the range of 685 to 985 MHz while high power

sources at lower frequencies were not on hand,

The choice of 720 MHz as the resonant frequency determines the cavity
diameter at 32 cm from equation (73). The choice of cavity length is somewhat
arbitrary. If we assume a constant power input of 20 kW, then increasing the cavity
length will increase output beam voltage up to a point where transit time effects
culminate. However, the increased cavity lengths in the range of 2.5 to 12.5 cm

were considered. A length of 3 cm was finally chosen.

The Q for the TM cavity was given by equation (84). Assuming

copper cavity walls with full con?hllgtivity, the calculated skin depth from equation (8 5)
is 2.43 x 10_4 cm, and the ideal cavity Q ié 1:01 X 104. The cavity fill time based
on the ideal Q is about five microseconds. Using the ideal @ and assuming the rf

O - pulse is long compared to the fill time, the cavity stored energy and peak electric
field strength were calculated using equations (81) and (83). The results are shown
in Table II along with other calculated parameter values. The transit time reduction
factor was determined from Figure 76, using the calculated values of electric field.
Beam voltage was calculated from eguation (79). The required current in the Table
is the peak value of current required to discharge all the cavity energy in one rf

half cycle which is obtained from equation (82). The maximum current density is

based on the nonrelativistic Child- Langmuir law.

The required beam area was obtained by dividing the required current
by the maximum current density. It is observed that for low input power the required
beam area increases rapidly. Hence, it becomes impractical to perform the experi-
ment at very low power level. A beam radius of 7 cm was chosen as a compromise
solution, one which would allow operation at power levels as low as about 5 kW but

would not be impractically large.
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A grid structure was used to inject the electron into one end of the
cavity. Ideally the grid should be non-intercepting for the electron beam, but appear

as a conductor to the rf currents in the cavity. Since the current in the TM cavity

010
is entirely in the radial direction, a structure made up of radial hairpin elements was

used. It can be seen in the photograph in Figure 78.

TABLE II
Input Power, P - kw ' 2.5 5 10 15 20 25 30
Stored Energy, U-joules 0064 .0107 .0215 .0322 .043 .0537 .0645
Electric Field, E - kV/cm 4.1 19.9 28.2 34.5 39.8 44.4 48.8
Transit Time Factor, M .765 .828 .876 .90 .91 .915 ,918
Beam Voltage, V - kV 35.0 59.6 80,1 101 117 132  145.5
Required'Current, Ireq -A 455 590 795 944 1090 1200 1310

2
Current Density, max - A/cm 1.69 3.63 6.1 8.18 10.1 12.1 13.8
‘ 2
Required Beam Area - cm 269 163 130 115 108 99 95

As a source qf injected electrons, a field emission-planar cold cathode
structure was considered. Some feasibility teéts indicated that it might not be possible
to achieve the desired rise time of about 0.5 nsec using this approach and it was,
therefore, abandoned in favor of a conventmnal oxide thermionic cathode The grid-
to-cathode spacing was chosen at 0,140 inch such that grid voltages in the range of

2.5 to 3.5 kV would be required to perform the experiment.

It is probable that the amount of current required from the cathode
structure will depend on the timing of the gun pulse relative to the phase of the fields
in the cavity. If beam injection begins when the cavity fields are just beginning the
accelerating phase, then the full current is required off the cathode, However, if

injection begins when there are decelerating fields in the cavity, then there will be a
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buildup of additional charge in the grid-cathode space due to electrons reflected by
the cavity fields, This reflected charge may be available to contribute to the beam

current when the cavity fields change to an accelerating phase., In this way the

_effective injection current might be as much as twice the cathode current.

To monitor the output beam, it would be desirable to measure beam
voltage, current density, and total current, However, to measure all of these in
the same device appeared to be impractical. It was decided that the most convenient
way to measure peak voltage would be through a measure of the maximum x-ray
photon energy with a scintilator, photodetectbr, and pulse height analysis. It was
decided that to measure current density a number of sampling holes would be drilled
in the output end of the cavity. The holes would lead to coaxial collectors which
could be used to measure both peak current density and wave shape. It was decided
that total current, as such, would not be measured. However, a sampling loop to
monitor the rf magnetic field in the cavity would give an indication of the rate of

energy removal by the beam and hence, an indication of the total current-voltage

product.

With regard to multipactor effects in the cavity, the minimun field
for multipactor effects can be calculated from equation (88). For a 720 MHz cavity
with a 3 cm gap, we get a minimum field of 9.4 kV/em. The operating fields in
Table Il are either in or above the multipactor range. Therefore, we must take some
measures to inhibit multipactor. To accomplish this, a pattern of slots was cut in
the ends of the cavity to geometrically inhibit the multipactor discharge. Field
emission effeéts should not be expected since the cavity fields are well below that

threshold.

2. Description of the Experimental Device

A sketch of the experimental device is shown in Figure 77. The inside

dimensions of the cavity are 12,913 inches diameter and 1. 181 inches length. The
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walls of the cavity are 5/8~inch thick stainless steel and are copper plated to mini-
mize rf loss. The rf input power is coupled in with a magnetic loop connected to
1-5/8 inch coax line with a brazed aluminum coaxial vacuum window. The orientation
of the coupling loop was adjusted for an overcoupled cdndition with a voltage standing
wave ratio of 1.53. An rf sampling loop was also included so that the field strength
in the cavity can be continuously monitored. The sampiing loop was weakly coupled
so that the power sampled is 33 dB below the power level in the cavity. The sampling

loop is fitted with a smaller aluminum coax window and a type N connector.

The cavity is evacuated through a number of rectangular slots in the
cylindrical wall. The slots lead to a 1-1/2 by 8-inch rectangular pipe which is con-
nected to a 50 f/sec Vaclon® pump. The pump has a side port with a valve which

was used to connect a fore pump during processing.

Oﬁe end of the cavity has the grid structure for injection of the electron
beam. The grid is made of molybdenum ribbon bent into hairpin shapes and brazed
_ into a cylindrical retaining ring. The grid ring is fastened to the cavity body with a
| second ring held with eight screws, A copper gasket is used between the grid ring
and the cavity to obtain good electrical contact. This assembly can be seen in Figure

78 which is a photograph of the partially assembled device.

The cathode structure which is shown schematically in Figure 77 is
fastened to the cavity with a ConFlat® vacuum flange joint. The cathode is 1/8-inch
nickel with a conventional triple carbonate coating. The cathode is indirectly heated
with a bifilar tungsten heater. The cathode diameter is 5.520 inches and the cathode-
to-gun spacing was set at 0. 140 inch. Hastalloy B material was used for heat shields
around the cathode and filament. A thermocouple was installed to measure cathode

temperature,

The cathode and its surrounding structures were designed to form the

termination of a twelve ohm coaxial transmission line. Since beam pulse rise times
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Figure 78. Partially Assembled Cavity Structure

137




of the order of 1 nsec were desired, efforts were made to preserve a relatively
constant impédance coaxial geometry. However, a number of mechanical congiderations
required departures from the ideal geometry. Figure 79 shows the cathode stiructure

in a stage of partial completion.

The end of the cavity opposite the grid and cathode has a number of
holes for sampling the beam. Behind:,the holes is a collector structure which is
mounted by a removable ConFlat vac@uim flange. The collector structure presently
has two coaxial connectors, one to sample current at the beain edge and one on the
beam axis. |

Construction of the'expérimental device has been completed; however,
it has not been possible to test the de_vi(;e because of lack of time and funds in the
existing contract. The construction of the large thermionic cathode proved much

more difficult than was anticipated. The cathode problems have been the major factor

in delaying the experiment. , (
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figure TH. Cathode Structure
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V. CONCLUSIONS

The electron flow calculations reported here lend further support to the conclu-
sion that the cathodes in megavolt diodes of the type considered act like space charge
limited cathodes. In the high current diode configurations studies, the electric fields
at the cathode in the absence of space-_charge are generally high enough that field
emission can occur over the entire cathode-and sometimes on the cathode support
structure as well. In that case, a plasma is presumably formed over the entire
cathode surface during the early part of the pulse. During the main part of the pulse,

the plasma apparently acts like an essentially unlimited source of electrons.

In very high current guns of this type, electrons emitted from the front of the
cathode reach the ancde but fhose emitted from back portions of the cathode do not.
The current arising from electrons emitted from the front of the cathode generates such
a strong magnetic field that the back electrons are forced to return to the cathode or
to move parallel to the cathode surface to form a sheath. To predict the electron flow
in diodes of this kind, one must properly account for the space charge of these sheath
electrons even though they may never reach the anode. To account for the sheath
electrons numerically presents considerable difficulty because they are moving very
close to the cathode surface where numerical errors are large, and they are generally

moving with a highly cycloidal motion which contributes further to numerical errors.

Two methods of accounting for the back electrons were investigated. One
method used an extra electrode called a sheath electrode at cathode potential to Simu-—'
late the space-charge of the sheath electrons. This method gave reasonably good
results, However, it required that the total anode current be known (or guessed)
before starting the calculation. Another method made use of magnetron theory to
determine the cathode emission. It was possible to incorporate this second method
directly into the calculation. With this method a cutoff factor is calculated for each
point on the cathode based on the electric field normal to the cathode and the self-

magnetic field tangential to the cathode. If the cutoff factor is above a particular
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valué, no emission is allowed. As the cﬁtoff factor becomes smaller than the critical
value, emissgion is gradually allowed to increase in accordance with the magnetron
theory. This model was reasonably successful. However, it probably allows too
much current to be emitted at the edge of the emitting area, particularly when the

cathode radius of curvature is quite small in that region.

The numerical calculations of electron flow using these cathode models show
fairly good agreement with measured results. For a diode with a spherical cathode
operated at 2.7 MV, the measured current was 60 kA and the calculated current was
63 kA, The overall beam size at the anode was in good agreement, but the current
density at the anode was open to some question. The calculated current density at
the anode had a péak near the beam edge which can be traced to a peak in cathode
emission. The peak in cathode emission is very likely a result of the cathode models
used and not a true representation. However, one would not expect exact agreement
between calculated current density at the anode and measured x-ray dose, because
both time-averaging effects and scattermg in the anode will tend to smooth the x-ray

dose compared to the current density.

For a diode with a toroidal cathode operated at 4.5 MV, the measured beam
current was 98 kA and the calculated current using the crossed field cathode model
was 125 kA, For this case also, the current density in the edge of the beam is
probably excessive. There was qualitative agreement between current density at the
anode and the measured x-ray dose. The agreement between calculated and measured

beam size at the anode was good.

Some calculations were made for planar diodes immersed in a confining axial
magnetic field. These calculations demonstrated that quasi~-planar flow can be
achieved even up to current levels of 1 to 2 MA with diode voltages of 15 MV by the

use of axial magnetic fields comparable in value to the self-magnetic field of the beam.
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A number of calculations were made for 15 MV diodes with no confining axial
field. In general, the convergence of the iteration procedures for these calculations
was not good. Presumably the lack of convergence is caused by numerical effects.
However, there exists the remote possibility that such a flow could in fact be unstable.
The convergence of the calculations appears to be good enough to make some estimates
with regard to the effects of diode dimensions on electron flow é,nd total current. A
good geometry to obtain a 400 kA beam appears to be a toroidal cathode with 21-inch

major diameter and 2-inch minor diameter, and an 18~inch cathode-to-anode spacing.

. With regard to the use of rf energy storage to generate short-pulse high-power
electron beams, -calculations continue to indicate feasibility in the use of this
approach. However, it was not possible to carry the experiment far enough to con-

clusively demonstrate feasibility.

With regai'd to future work, the numerical analysis of megavolt diodes has
been brought to a point where fairly good predictions can be made of the electron flow
in high impedance diodes. Considerable progress has been made in the method of
modeling the cathode, but some additional work could l_oe done, particularly with
regard to the edge of the emitting region. Several possibilities exist for improving
the convergence of the iteration procedures. These should be investigated. It is
Iikely that the improved models and convergence procedures developed during the
past year would make the analysis of low_er impedance diodes more practical. This

possibility should he investigated.
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